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Scattering of P and S Waves by a Spherically Symmetric Inclusion

VALERI A. KORNEEV! and LANE R. JOHNSON

Abstract —Scattering of an arbitrary elastic wave incident upon a spherically symmetric inclusion is
considered and solutions are developed in terms of the spherical vector system of Petrashen, which
produces results in terms of displacements rather than displacement potentials and in a form suitable for
accurate numerical computations. Analytical expressions for canonical scattering coefficients are ob-
tained for both the cases of incident P waves and incident § waves. Calculations of energy flux in the
scattered waves lead to elastic optical theorems for both P and S waves, which relate the scattering cross
sections to the amplitude of the scattered fields in the forward direction. The properties of the solutions
for a homogeneous elastic sphere, a sphere filled by fluid, and a spherical cavity are illustrated with
scattering cross sections that demonstrate important differences between these types of obstacles. A
general result is that the frequency dependence of the scattering is defined by the wavelength of the
scattered wave rather than the wavelength of the incident wave. This is consistent with the finding that
the intensity of the P — S scattering is generally much stronger than the S — P scattering. When
averaged over all scattering angles, the mean intensity of the P — S converted waves is 2F7/V} times the
mean intensity of the S — P converted waves, and this ratio is independent of frequency. The exact
solutions reduce to simple and easily used expressions in the case of the low frequency (Rayleigh)
approximation and the low contrast (Rayleigh-Born) approximation. The case of energy absorbing
inclusions can also be obtained by assigning complex values to the elastic parameters, which leads to the
result that an increase in attenuation within the inclusion causes an increased scattering cross section
with a marked preference for scattered S waves. The complete generality of the results is demonstrated
by showing waves scattered by the earth’s core in the time domain, an example of high-frequency
scattering that reveals a very complex relationship between geometrical arrivals and diffracted waves.
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1. Introduction

The earth is inhomogeneous on a wide range of scales and a variety of methods
have been developed in seismology for analyzing the effects of this inhomogeneity.
The theory of wave scattering, as developed in the fields of optics and acoustics,
has been adapted to the case of elastic waves and has been quite useful in study-
ing certain types of inhomogeneity. For instance, AK1 (1969) attributed the coda
waves from local earthquakes to scattering in the lithosphere, AK1 (1973) used
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scattering theory to study the phase and amplitude fluctuations of waves arriving at
a seismic array, HADDON and CLEARY (1974) interpreted the precursors to PKIKP
as due to scattering near the mantle-core boundary, and A1 (1980) considered the
role of scattering in the attenuation of waves. In parallel with these applications of
scattering, the necessary extensions in the theory of elastic wave scattering were also
developed (see for example WU and Aki, 1985a, 1985b). KORNEEV and JOHNSON
(1993a, 1993b) discuss the background for both the exact and approximate theoret-
ical developments in this area. A rather different application of scattering theory to
seismological problems has involved the derivation of asymptotic solutions which
are valid at high frequencies. The literature for this approach is extensive and
includes SCHOLTE (1956}, NUSSENVEIG (1965, 1969), PHINNEY and AIEXANDER
(1966), LupWIG (1970), CHAPMAN and PHINNEY (1970, 1972), RICHARDS (1973,
1976), CHAPMAN (1974), ANSELL (1978), and CorMIER and RICHARDS (1977).
More recently, CORMIER (1995) has combined high and low frequency approxima-
tions to study scattering near the mantle-core boundary.

The full treatment of elastic wave scattering is not a simple task, and most
seismological studies have employed various approximations in their use of scatter-
ing theory. These include the assumption of only one type of wave (acoustic
approximation), the assumption of a low contrast in material properties (Born
approximation), the assumption of low frequencies (Rayleigh approximation), and
the assumption of high frequencies (ray approximation). While these approxima-
tions appear to be reasonable in many cases, a rigorous justification of their use is
difficult. One method of checking the validity of the approximations is to compare
them with exact analytical solutions. The purpose of this paper is to develop and
discuss the properties of one such solution, the scattering of plane P waves and §
waves by a spherical inclusion.

A spherical inclusion is the most convenient choice as a test model for
comparison with approximate solutions. It is one of the few objects for which the
scattering problem has an exact and computationally tractable solution, and it has
the desirable property of being describable by a minimum number of parameters.
The treatment of the canonical scattering problem for the sphere has a long history.
For light scattering it was formulated by MIE (1908) in terms of a series of spherical
harmonics, and a comprehensive discussion of this topic can be found in VAN DER
HuLsT (1957). Elastic scattering by spherical obstacles has also been the subject of
many publications, with some authors using potentials in their approach to the
problem (YING and TRUELL, 1956; TRUELL et al., 1969; YAMAKAWA, 1962;
NIGUL et al., 1974; MOROCHNIK, 1983a, 1983b) and others using displacements
(PETRASHEN, 1946, 1950a, 1950b, 1953; KORNEEV and PETRASHEN, 1987). The
present paper follows this latter approach and a detailed treatment of the analytical
and numerical aspects of the scattering problem for P waves incident upon a
" spherical inclusion can be found in KORNEEV -and JOHNSON (1993a), with a
discussion of various approximate solutions in KORNEEv and JOHNSON (1993b).
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These results are extended in the present paper to the case of an incident S wave so
that the comparisons can be made between the relative scattering of P waves and
S waves by various types of spherical inclusions.

2. Statement of the Problem

Consider a two-part isotropic medium consisting of a spherically symmetric
inclusion V; (part v =1) with radius » = R having elastic parameters A, = ,{r),
=, (r) and density p, = p,(r) which is embedded in a homogeneous elastic
surrounding medium (part » =2) having clastic parameters A =1,, u = u, and
density p = p,. The inclusion ¥; may contain a number of internal shells which are
bounded by spherical interfaces where the material properties or their spatial
derivatives are radially discontinuous. The boundary conditions on such interfaces
as well as those at the surface r = R are linear and homogeneous. We assume that
all elastic displacement fields under consideration have harmonic time dependence
of the form ¢™ where w is the angular frequency. Joint Cartesian {x, y, z} and
spherical {r, 6, ¢} coordinate systems with the origin at the center of the inclusion
will be used.

Incident from medium » = 2 is a harmonic disturbance with a displacement field
given by

Uy = Us(x, y, 2) e™". (2.1

The interaction of this incident wave with the inclusion gives rise to additional
displacement fields both inside and outside the inclusion, and these are denoted by

U, =U,x,5,2), (v=1,2). (2.2)

Since we will be primarily interested in the properties of the additional disturbance
outside the inclusion, this field with subscript 2 will be referred to as the scattered
field U, = U,. Thus, the total ficld U in the outer medium v =2 is a sum of the
incident wave and scattered field

U=U,+U,,. (2.3)

The field U, as well as both of its individual components, must satisfy the equation
of motion for a homogeneous isotropic elastic medium.

(A +2w)VU —pV x V x U+ po?U =0. (2.4)
The equation of motion in any spherical shell within the inclusion has the form

o2
(A1 +2u) VU, — 1,V x V x U, +6—;V'U1f

o, 0U, 9
-I—Zﬂ—l—k—'t]—[foxUl]—f—plszl:O. (2.5)
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We denote the velocities of the compressional and shear waves and their ratio

by
A +2 A | 4%
V},”’ _ M, yo = f‘i, p@ = 2 (2.6)
0, Py vy

with the understanding that no superscript implies the surrounding medium,
V,=VP, ¥V, =V®, y=y@. We require that the scattered field satisfy a radiation
condition at large distances from the inclusion

~ AP(H’ ¢) e_ikp" +M e*’-ksr,
v r

U

sC

(r — o0) (2.7)

where k, = o/V? and k; = w/V?®. The functions A,(0, ) and A,(6, ¢) will be
referred to as scattering diagrams of compressional and shear waves, respectively.

3. Spherical Vectors

The solution will be developed using the spherical vector system of PETRASHEN
(1945, 1949). A fairly complete description of this system can be found in KORNEEV
and JOHNSON (1993a), therefore only the essential elements of the system will be
listed here. The basis vectors for the system are

Y, =Y0.(0, ) =rx VY,,(0, ¢)
Y., =Y0,¢) =+ 1Y, (8, d) —rVY,,(0, d) (3.1
Y. = Y50, ¢) = [£Y,,(0, ¢) +rVY,, (6, ¢)
with the usual definition of the spherical harmonic functions
Y, (0, d) =e™Pr(cos ), >0, (—I<m<l).

The vectors of this system are linearly independent at any point (6, ¢) on a
spherical surface. For / =0 only the one vector Yg, =F is nonzero.
In the space of vector functions (6, ¢) defined on the spherical surface Q

0<O<n, 0<¢<2m, dQ=sin0d0dp

the basis vectors satisfy the orthogonality relation

J Y*© - Y§9) dQ = 9126, Oy, 0 (3.2)
Q

KK | mm |
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where the normalizing coefficients are given by the expressions

o [ 2+l (—m)
Cm= Al + 1) (U +m)!

.1 a—m
C’""/4n(1+ N (+m)! (3:3)

1 a=my
=\ amd A+ my

For vector functions f(6, ¢) with a finite norm

j|ﬂ%ﬂlzj‘ﬁ-fd9<:w
Q Q

the system of spherical vectors (3.1) is complete in the sense of convergence in the
mean for a generalized Fourier series expansion of (6, ¢)

0 /
fo.9)= > Y X alYio, ¢) (3.4)
k=0,+,— I=0m= -1/
where
afd =[c{9]? J Y*) - £4Q. (3.5)
Q

Using the completeness of the vector system (3.1), we can seek a solution of our
scattering problem in a form of a series

U, 0, ¢) = IZ Ay iR () Y56, ). (3.6)

Because of the spherical symmetry of the present problem, the 3-D scattering
problem is reduced to a 1-D boundary problem which must be solved for the radial
functions ¥ §(r). If the field U is known on any spherical surface r = constant, then
the expansion coefficients of (3.6) can be determined using the orthogonality of the
spherical vectors

Ay i (r) =[c)1? J Y*52(6, ¢) - UG, 6, ¢) dQ. (3.7)

4. Basic Expressions

In the case of elastic wave propagation in a medium with spherical symmetry a
critical element is the traction vector on a surface r = constant, which has the form

oU
t(U) = AV Uk + 21—+ plf x V x UL (4.1)
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If the field U is taken to have the form (3.6), then the corresponding traction vector
has the form

t.(U) = X THMOYRO, ¢) (4.2)

K,l,m

where the expansion coefficients are given by

Th(r) = @—;“ - ‘”—) (4.3)
To(r) =di [(,1 + 2u)<5‘/’°0 +2 Vo ) 4y @} (4.42)
Th(9) = d”" [((z + 1)+ (31 4+ 2)p) '/”’" + (0 + 2+ DA — ) ‘/”'”}
P l(—;li—‘l‘—) (6‘gr’m —( -1 M) (4.4b)
o —dp +213)(jl+u) (mgzm e m)
+ ;1’" [(1; + (3] + Dp) ‘/”’” +( =D+ D —14) ‘”’m>. (4.5)

Note that the coefficient %2 remains coupled with the same vector Y(2 (0, ¢) in the
expression for both the displacement (3.6) and the traction (4.2). Differential
equations for the radial functions ¥ {(r) can be obtained by substituting (3.6) into
(2.5) and using the orthogonality of the spherical vectors. Solutions in the form of
power series for the general case can be found in KORNEEV (1983), but in this
paper the emphasis will be on the special case of a homogeneous sphere.

In the dynamic theory of elasticity it is useful to consider displacement field as
a sum of irrotational (P) and solenoidal (S) fields

which satisfy the conditions
VxU,=0, V-Ug=0 4.7

and represent compressional and shear waves, respectively. Since V- ¥(r) Y3,.(6, ¢) =
0 and V X Y(r)Yd, = 0 the fields (4.6) have the form

Up= Y {FLOYL +Fip(OYi,} (4.8)
1>0Jm| </
Us= Y {/OYh +0Y5 +/m0)Y,, (4.9)

Iz 1,ml<i
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where for / > 1 the radial functions must satisfy the equations

é@-(s—1)F””—8§lm—(z 2)512= (4.10)
<af"” (I~ )f"”>+(1+1)<f””+(1+2)f’m> 0. (4.11)

In the case of a homogeneous isotropic elastic medium, the displacement field U
must satisfy the equation of motion (2.4). Substituting the expressions (4.8) and
(4.9) into (2.4) and using the orthogonality of the spherical vectors, one obtains
differential equations of the second order for the radial functions. These equations
have general solutions of the form

Fi(r) = a;,f jro(kpr) + ag by Ger)
Fi(r) = ajy ji1(kpr) + agy by (kyr)
Sin®) = b5y egr) + b3, by ()
S @) = by jioalegr) + b3 by (k,r)
Sin(r) = cimiikeer) + cinhy (k). (4.12)

The solutions here have been constructed as a linear combination of two indepen-
dent solutions, the spherical Bessel functions j,(k#) and the spherical Hankel
functions of the second kind #,(kr). Fields which are regular at the origin will
contain only the spherical Bessel functions, whereas secondary scattered fields
which must satisfy the radiation conditions of the form (2.7) when r — oo will
contain only the Hankel functions. The differential equations (4.10) and (4.11) in
this case reduce to

ap = —aly, ((+ Db =by;, (n=1,2). (4.13)

We assume that the source is located outside the obstacle so the incident wave
U, is regular at the origin and the radial functions of this wave will contain only the
spherical Bessel functions. Thus the general case for the incident field U, is given by
the expression

U, :lz {Cg’njl(ksr)Y?m [aln1]1+l(k r) +lb widr+1 (kDY 3,

+[—ap.ji- y(kyr) + (1 + Vb2, ji 1 (e Y5} (4.14)

with aribtrary coefficients aj, for the P disturbance and coefficients 59, ¢2,, for the
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S disturbance. Introducing a.set of “canonical” incident waves defined as
Pu, =Ji 1 (k)Y (0, ) —ji 1 (k1) Y,,(6, ¢)
SVi =l 1 (k)Y ,(8, @) + (U + 1) (k1) Y1, (0, ¢)
SH,,, = ji (k1) Y30, ¢) (4.15)

we can represent (4.14) as the linear combination

U= {a},P;, +b5,SV,, + ¢, SH,, }. (4.16)
Im
Each of the waves of (4.15) satisfies the equation of motion (2.4). The wave P, is
a pure compressional wave and SV, and SH,,, waves are both shear waves.
Now consider the incidence of canonical waves of the form (4.16) on the
inclusion V. Substitution of the field U, having the form (3.6) into the equation of
motion (2.5) leads to a separate set of differential equations for radial functions for
any pair of indices /, m. Moreover, the equation for determining ¥9,(r) separates
from those for ¥ ;. (r) and ¥/, (r). Also, note that the azimuth index m is not present
in any of the coefficients of the differential equations. The boundary conditions on
the surface r = R of the inclusion are required to be linear and homogeneous. For
a welded elastic-elastic interface they have the form

U, =U,+ U, and t[U,]=t2[Uy+ U] (4.17)

with the usual modifications for elastic-fluid and elastic-free interfaces. Again,
because of orthogonality of vectors (3.1), separate boundary equations may be
obtained for any pair of indices /, m, and in the present problem these equations do
not depend upon the index m. The canonical field P, will excite in the medium
v =2 a scattered field of the form

U;:‘n = [afph,+ 1(kp”) + lbfshu 1(k,NY
+1—afthy_ Ue,r) + (I + Db hy s (e, Y (4.18)
The canonical field SV, will excite in the medium v =2 a scattered field

UL =1ai by kyr) + 07y 1 (k0] Y,

+[—afh_(k,r) + 1+ Do hy_ (k)] Yo (4.19)
and the field SH,,,, will excite in the medium v =2 the scattered field
UsH = c5hy(k,1)YY,. (4.20)

The set of coefficients af?, af¥, b5S, bFS, ¢§ which are contained in these
expressions will be called the canonical scattering coefficients for the inclusion V.
They may be found as solutions of lincar systems following substitution of the
relevant expressions into the boundary conditions and using the orthogonality of
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the spherical vectors. Analytical formulas for these canonical scattering coefficients
for the case of a homogeneous clastic spherical inclusion, as well as for the special
cases of a fluid filled spherical inclusion and a spherical cavity, are given in
Appendix A. These will be discussed in more detail later. It is worth noting that the
use of these analytical solutions produces results with about two orders of magni-
tude better accuracy than the commonly used direct numerical solution of the linear
matrix equations.

Once the canonical scattering coefficients are known, an incident field (4.16)
specified by the coefficients al,, 9, ¢%, will generate a scattered field which can be
written as

Usc = Z {cgncfhl(ksr)an

im

+(ahaar’” +b3,a7" Yy (kpr) + Uad, b + b3,b75 Yhy (kY

+[—(ad.al” + biai® Yy (k,r) + (1 + 10agbPs + b5,b7 )y (k1Y -
(4.21)

This represents the complete solution for the scattered field from a spherical
inhomogeneous inclusion for an arbitrary incident wave.

The field U, inside of the sphere will have the general form of (3.6) and will be
linearly dependent upon the source coefficients a¥,, 59, c5.. For the special case of
a homogeneous isotropic material inside the inclusion, U, has the same form as
(4.21) with all of the functions A, replaced by the corresponding functions j, and
with a new set of canonical coefficients for the inner medium v =1 (* < R). For the
sake of completeness, analytical expressions for this internal set of canonical
coefficients for the cases of elastic and fluid spheres can be found in Appendix B.
However, throughout the remainder of this paper only the scattered field outside of
the inclusion will be considered.

One method of determining the coefficients aj,,, 59, ¢, of the incident wave is
to use (3.7) and integrate the product of the incident field U, with the correspond-
ing spherical vector. Thus, for the case of a plane P wave propagating in the
direction of the positive z axis

UO — e—-ikpzi (4.22)
and
al, =e~{E@ADs o po 0, 9 =0 (4.23)

For an incident plane S wave propagating in the direction of the positive z axis and
polarized along the x axis

U, = e %% (4.24)
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and
1
0 _ 0 _ — — i)+ 1)
a,, =0, b, A0+ 1) I+ 1)3,, 01 )€
21 +1 .
o _ __~“ ' - —z(n/2)(3+1). 4.2
clm 2[(1 + 1) (ZU + 1)6111,—1 + 5m,l)e ( 5)
For a point pressure source located at the point Ry = (z,, 0, 0) where z,> R
Upo —y & 4.26
TR (429
and
ap, = —ik2h(k,20)0,0, bh, =0, ¢5,=0. (4.27)

The scattered field (4.21), expressed in terms of spherical unit vectors (f, 0, $), for
the cases of the incident plane P wave (4.22) and the incident plane S wave (4.24)
is given in Appendix C.

The convergence of the series (4.21) depends upon the frequency w, the
observation distance r, the canonical scattering coefficients, and the coefficients of
the incident field, and each combination of these variables may require a special
investigation. This, together with the numerical difficulties discussed below, are
important considerations if accurate numerical results covering a broad frequency
band are desired, particularly in the time domain. TRUELL et al. (1969) considered
these problems but were unable to arrive at definitive solutions. The more usual
situation, such as in VARADAN ef al. (1991), is to present numerical results with
little discussion of the accuracy which has been achieved. The basic problem is to
estimate the number of terms that should be included in the series in order to
achieve a certain level of accuracy. One general guideline is that the number of
terms which are necessary in order to represent the incident wave on the surface of
the inclusion at the desired accuracy is a good estimate of the number of terms
required in the solution series. KORNEEV and JOHNSON (1993a) considered this
problem for the scattering of a plane P wave and showed that the necessary number
of terms in the series could be estimated by the formula

R
. ek,

+N (4.28)

where R is the radius of the sphere and N is a constant. A value of N =15 is
sufficient to give an accuracy of 1078,

In addition to the matter of convergence, considerable care must be exercised in
order to obtain accurate numerical results from the series solution (4.21). If any of
the velocities within the inclusion exceeds the velocity of the incident wave, some of
the spherical Bessel functions will have exponential behavior and a straightfor-
ward calculation of the canonical scattering coefficients will fail. This problem is
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avoided by expanding the ratios of Bessel functions, such as j.(z)/[j,(z) with k =
I —1,7+1, in a Debye approximation. Such a treatment is especially important at
high frequencies, as the numerical instability is encountered before the solution has
converged (KORNEEV and JOHNSON, 1993a). The same type of problem is present
for an incident S wave, where spherical Hankel functions corresponding to the P
velocity in the surrounding medium occur in the ratios 4.(z)/h,(z) and h,(zr/R)/
h(z) with k =1—1,/, 7+ 1. It is only with attention to matters such as these, and
the general use of double precision, that numerical results such as those presented
in a later section can be obtained.

5. Flow of the Scattered Energy

A useful method of characterizing the scattering by an object is to calculate the
energy of the scattered waves and compare it to the energy of the incident wave.
Various forms of this ratio between the scattered and incident energies are called
scattering cross sections. The energy of the scattered waves can be obtained by
calculating the energy flux of scattered waves through a surface S that completely
surrounds the object. Noting that the energy flux through a surface element ds
having a normal n is given by (U - t,[U]) and that the energy flux averaged over one
period is @ Im{U - ¢#[U]}/2, then the total energy flux per period through the
surface S is given by

_ Imf (U - t¥[U]) ds (5.1
2 s

where (*) denotes the complex conjugate.
Substituting the total field (2.3) into (5.1) and assuming conservation of energy
(no energy absorption by the material), we obtain

F:Fsc‘+2Fc _ImJ(Usc n sc)ds—{—wImJ\(Usc n[ ODdS:O (52)

where F,, is the total energy flow of the scattered field and F, describes the energy
of coherent interaction between the scattered field U,, and the incident field U,.
Physically, the phenomena of scattering describes the conversion of part of the
energy of the primary incident wave into the energy of the secondary scattered
waves. Therefore, after the incident wave has interacted with the inclusion, it should
have lost part of its energy. However, the formal solution (2.3) leaves the incident
wave undisturbed. This means that the additional field U, of (2.3) must include
both the change in the primary wave along with the secondary scattered waves. We
will return to this problem later when considering the scattering cross sections of
elastic spheres.
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To calculate the energy flow F,, of the scattered field (4.21) caused by the incident
field (4.16) we need expressions for the tractions associated with both of these fields.
Since total energy flow does not depend on the shape of the surface S, we let S be
a spherical surface of radius r, which is arbitrary to the extent the inclusion is contained
inside S. The traction vector t.(U,.) of the field U, on this surface has the form

t.(Uy) =) {ch,c? C Y, +1(@h,af” +b5,a7" ASP)A [ +Ua}, b +b3,b67%)B} 1YL,

Im

+ [(a(l)m 7 =+ blmalP)Al _(l + l)(almbPS + b bSS)Bl ]Ylm} (53)
where
=2 lerhy_ (er) = (1 + 2] (54)
APl plkr Iy (k)
B L 1)/1,,1(;{1,@}:' &
B\ _n (I + Dy (k)
Bl_}— - lierh,(ksr) — 2{(1 - 1)h,_1(ksr)}} (5.6)

The traction vector for the incidence field (4.16) can be obtained from (5.3) by
setting all canonical scattering coefficients equal to one and by substituting for all
spherical Hankel functions the corresponding Bessel function in (5.4)—(5.6).

The next step is to make all of the necessary substitutions in (5.2) and perform
the integration over S. This is accomplished by applying the orthogonality relations
of the spherical basis vectors (3.1) and then performing a series of manipulations
making use of recurrence relations and Wronskians of the Bessel functions. The
final result, after a considerable amount of algebra, is

F,=F +F,

(+
(-
(I +m)!
(I —m)!

x [ (|§;m+ 1l)2+ labFS + b?mb,SSIZ] (5.7a)

which can also be expressed as

m)!
S laal” + b,ai"
m)!

=2n(/ + 20V, Z (20 +1)

+27(A + 20V, Z (2l +1)

I+ 1)y

= —2a(l + 2wV, Z @RI+ El +m;' {[a?m |* Re{a;”} + Re{a}lb},at”}
2
+ (1 + 1))}3[(—2';—'_}%)2 Re{ci} + |9, | Re{b575} + Re{al, bl bps}]}

(5.7b)
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This is an exact result that is valid for any » > R that does not enclose the source
r < Ry, and the derivation has not made use of the usual assumption that r — cc.
At distances greater than that of the source, r > R,, the above result is easily
modified by including the energy flow out of the source. The part £, corresponds
to the energy flow at the scattered P waves and the part F3, corresponds to the
energy flow of the scattered § waves. As can be secen, the combined incidence of
both P and S waves on the inclusion can cause constructive or destructive
interference in the scattered field.

The equation (5.7) must be true for any set of coefficients for the incident wave
(4.16), which leads to the following four independent relations between the canon-
ical scattering coefficients

e P = —Re{c?} (5.8)
laf? P+ Il + 1)y|bFS P = —Re{af”} (5.9)
1§74 10 + Db P = — I + 1)y Re{b ) (5.10)

2@fPafst + I+ Dy*bfSbFSS) = —a¥SP —I(1 + 1)y°bTs. (5.1)

Multiplying (5.11) first by a;f* and then by 5775 and eliminating the quantity
ay*b¥s leads to the expression

a7 P|1 +2a7P P =PI+ Do Pl + 2675 .
Using the equivalences (5.9) and (5.10), this equation reduces to
lai” P =1+ D>y 5[ (5.12)

The equivalences (5.8)—(5.10) will be used in the next section in formulating optical
theorems. The last equivalence (5.12) will be used later when considering the
relation between P — .S and .S — P scattering. The equivalences (5.8)—(5.12) are
also useful in verifying the accuracy of numerical calculations.

It 1s worth noting that the result (5.7) would also have been obtained if the
radial functions had been reduced to their far-field asymptotic expressions before
substituting into (5.2). This means that the net energy flux due to the near-field
terms in the solution is zero. However, as shown by KORNEEV and JOHNSON
(1993a), these near-field terms can significantly affect the displacement field formed
in the vicinity of the inclusion.

6. Scattering Cross Sections and Optical Theorems
Here we consider the special cases of an incident field consisting of either a

plane P wave or a plane S wave. Earlier we obtained the coefficients (4.23) and
(4.25) which represent these waves in terms of the spherical vectors (3.1). Now we
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introduce the scattering cross section ¢ as the ratio

F,
o= , (6.1)
which is the energy flow F,. of the scattered field normalized by the energy flow F,
of the incident wave per unit area normal to the direction of propagation.
We begin with the case of the incident plane P wave (4.23). For this wave the
energy flow per unit area of the incident wave is

FL= () +2p)k, —“23 (6.2)

Substituting coefficients (4.23) into (5.7) we get the scattering cross section

FP
oP =23 = PP 4 oPS

F§
=k~’§ Y. 21+ 1) {jaf" P10+ 1ylb7 ) (6.3a)
pl=0
4n 2 .
=~ L I+ DRefal"} (6.3b)
pl=

On the other hand, putting the coefficients (4.23) into the expression (4.21) for the
scattered field and using the asymptotic representation

I .
h(2) =~ e~iE-ERIED) (75 ])

for the spherical Hankel functions, we obtain for 6 =0

e—ikpr
UL(0) = 4(0) (6.4)
where
Ap(0) =— Z (2{ + Daf®. (6.5)
p 1>0
Comparing (6.3) and (6.5) we have the equation
47
6¥= ——Im{4,(0)} (6.6)
kP

which is the optical theorem for an incident plane P wave. This equation establishes
a connection between the scattering cross section and the amplitude of the scattered
field in the forward direction.
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For an incident plane S wave (4.25) the procedure for obtaining an optical
theorem is similar. The energy flow per unit area of the incident S wave is

FS =k, ~. (6.7)

Then, vsing the coefficients (4.25) in (5.7) we have
FS

L FS SP+O.SS
27r © (20 + 1)
kS I+ 1)

)

la ,S”|2+g S (l+ DB F + [e7 [ (6.82)
s iz1

2n
=5 zl (20 + 1) Re{b5S +¢5}. (6.8b)
s iz

The forward scattered shear wave in the far field has a form

‘lk ¥

US(0) = 45(0) € (6.9)
where
Ag(0) = Z 21+ D(bBFS +¢7). (6.10)
2ks I>1
Comparing (6.8) and (6.10) we have
o5 = _4n Im{A45(0)} (6.11)

K,

which 1s the optical theorem for an incident plane S wave. Optical theorems such
as this and (6.6) can be useful in studying the attenuation of waves due to
scattering.

7. Comparison of P — S and S — P Scaitering

The equivalence (5.12) allows one to compare scattering of converted waves for
the same scatterer. Applying (5.12) to (6.3a) and (6.8a) we see that the scattering
cross sections for converted waves are connected by the simple relation

PS 2

o == g% (7.1)
Y
This equation says that the scattering cross section of P — .S converted waves is
significantly larger than that for S — P converted waves. This result is valid for any
spherically symmetric scatterer.
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In practice one deals with the amplitudes of scattered waves, and so it is useful
to also estimate the mean intensity (squared amplitude) of the field. Using the
far-field approximation, the mean intensity of the scattered field for an incident
plane P wave has the form

! J U, [ d0
Q

I, = —
P 4g

1 o0
=5 X QL D{lal P+ 10+ 1t P
PU Y

G'PP O'PS

=t ——=] I 7.2

47'cr2+47zyr2 rr ¥ lps (7.2

where the integration is taken over a spherical surface at the radius r > R in the
far-field zone. Similarly, for an incident plane S wave we have

1
Iy=— | |U.PdO
S 47TLI sc| d
— 1 00(21+1) SP |2 1 - S5 2 S|z
= 5 e T e 4 @ DR D)
O.SP G'SS
:’)}——‘4nr2—|——4anEISP +Iss. (7'3)

Using the equivalence (5.12), we have for the ratio of the mean conversion
intensities

I 1675 2 A+2u)
s _10 __4=2(+—3u). (7.4)

Isp B F aSF Y u?
Thus, if the comparison is made between the intensities of the waves rather than the
energy flux of (7.1), the asymmetry in the average conversion P and S waves by
scattering is even larger. Note that this is a general result that holds for all
frequencies. For the “typical” seismic situation where y =1 /ﬁ, the ratio (7.4) is
equal to 18. For soft media, where 7y is even smaller in a relative sense, this ratio
could be significantly larger.

For the case of homogeneous spherical inclusions (elastic, fluid or cavity), an
even stronger result can be obtained which involves no spatial averaging. First, note
that the converted far field for the incident plane P wave (4.22) is easily obtained
from (C.1) and has the form

e %" 3P,(cos ) ~ e ks

~ ] ps> ~ VENRMES Py 4
Upg ~ 11;(21+1)b1 P 0= Aps(,6)——0 (7.5)

where Aps(w, 6) is a scattering coefficient for converted P — § waves. Similarly, for
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the incident plane S wave (4.24) the converted far field can be derived from (C.3)

2+ sre prP(cos@)r—ASP(w 0, ) _k”'f (7.6)

Ugp &

s 18O L T i
with the scattering coefficient Agp(w, 8, ¢). Now for the case of a homogeneous
inclusion it follows from the solution listed in Appendix A that

PP =93 + DbES, (7.7)
Using (7.7) in (7.5) and (7.6) we have the relation
Asp(0, 0, ) = —y3cos ¢ - Aps(w, 0). (7.8)

Thus, in the far field the scattering coefficients of the converted waves have the
same functional dependence on frequency « and angle 6. For the case of an
incident P wave the problem has axial symmetry so A,¢ has no dependence upon
¢, but this is not true of Agp.

AKI (1992) arrives at a result similar to (7.4) and (7.8) using a more general
approach involving the reciprocal theorem. He considered only the case in which
the polarization of the P and § waves was in the same plane (¢ =0), and thus
obtained an equation similar to (7.8) without the cos ¢ term. Consequently,
because the average value of cos” ¢ is 1/2, his equation for the squared amplitudes
does not contain the factor of 2 found in (7.4). The approach of Ak (1992) is
extended in Appendix D to consider polarized S waves and it is shown that general
reciprocal relations can be established in the far field for an arbitrary localized
scatterer. When averaged over many different scattering angles, these results are
identical to (7.4).

8. Homogeneous Sphere

The results that have been presented thus far are valid for any inclusion that has
spherical symmetry. To proceed further requires that solutions be obtained for the
canonical scattering coefficients, and in order to do this it is necessary to specify the'
internal structure of the inclusion. Here we consider the special case in which the
material properties of the inclusion are independent of the radial coordinate, in
which case it is possible to obtain analytical solutions for the canonical scattering
coefficients.

The scattering of plane P waves by a homogeneous sphere was treated in our
previous papers (KORNEEV and JOHNSON, 1993a, 1993b) where detailed interpreta-
tions of the scattered fields were presented. That set of solutions has been expanded
to include the scattering of S waves and the complete set of canonical scattering
coefficients for a homogeneous spherical inclusion is given in Appendix A. In
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addition to the elastic inclusion, formulas are also given for the special cases of a
fluid inclusion and an empty cavity.

Consider the solutions given in Appendix A in the limit of low frequency. Then
the most significant scattering coefficients are given by the asymptotic expressions

3
635(11_22)‘1’#1“#2
“ =IeT7 &0
5(5/114”,“1)"’#2
3 3
afpz—ié—(&—l) b{’S:i"—(ﬂ—l) (8.2)
9 \p2 9 \p2
A 32 (i y
pr_ o3 2 (M pES = _ip3 = (1) 8.3
aff = it 45<”2 )5 =i (1) (8.3)
32 (P . 32{p
as‘p=z£3~(——1>, b$S = ——zrf’—(——l 8.4
i o\, j 5\, (8.4)
1 4 ? 32 (i 1
sp_ g3 M8 )7 SS_ 3 2 (P 2
ast = —i 45<ﬂz 1>D’ b5 =1in 15(#2 1 D (8.5)
5 5
s__Mn (P _ s B— 8.6
“ : 5(102 >’ = l454ﬂ2+ﬂ1 (8.6)
where
¢=k,R, n=kR (8.7)
2
D=1+ @- 1)(3 +29?), (8.8)
2

The coefficients ¢§ and ¢35 are obviously much smaller than the others and may be
neglected at low frequencies. The case of a fiuid inclusion is easily obtained from
(8.1)—(8.5) by putting u, =0.

The coefficients (8.1)—(8.5) may also be considered for the case of intrinsic
attenuation inside the inclusion by assuming that the elastic parameters A, and p,
have complex values. In this case the coefficients for / =1 depend only upon the
density contrast of the inclusion, whereas the other coefficients in the limit of large
intrinsic attenuation go to the values

arr =i & gpr e e Y (8.9)
0 37 72 34292 72 3 3422
asf = —i2¢3 ’ b§S=in3#. (8.10)
34297 3+ 2y

These formulas represent the case of a small absorbing inclusion which captures all
of the energy which crosses its boundary.
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It is convenient to describe the energy scattered by a homogeneous spherical
inclusion with a nondimensional normalized scattering cross section. Dividing the ¢
from (6.1) by the area of the geometrical shadow, we have

g
gN:W. {8.11)

For an incident P wave in the low-frequency limit we have

3 2
S =)+ —
4 2 1 2 16
SO S T *5@‘1) A
2

5/11+.U1+2#2
8 1 (p > Al
SRR
2777 1 \p2 5| wD
5 i+
4.2 1 2 P — o 1/, 2 2
=§é 3 +§ p——l 1+F
511+#1+2#2 :
2 3
(2y2+F> . (8.12)

2
Similarly, for an incident S wave we get
2}

4 2 4
ox =08 + a?f:~n4v3{<%~ 1) +27°

W — 2
paD

8

2)“1“:”2
457

D

Hy — Mo

27 5 5 wD
8 Pi 3w — )
+-—pHl = =1 -
27” {<Pz ) +5 H2 D

4 (e > 2 b=
— ¥ o1 3 REOWENTEN o
57 {(pz > (7 +2) +2 (27 +3) oD

2} (8.13)

For the low-contrast case, where
@ _ Ml _)~2| «1, M _ |ﬂ1 _ﬂzl «1, ‘_5_| :lpl _P2|
A A I 2 I p
the expressions (8.12) and (8.13) can be simplified to
2 3
o)

4 11364 +26ul®> [dp\? 2 8 |6u
p_ T oa)d NCah I IO I
o 5{3’ A4 2u +<p +y3 +15 U
4 11364 +26u®> 2 (6p\> 8 |oul?
S e P L I A L (8.15)
277 (3| 242 PP S5y | u

<1, (8.14)
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and

4 dp \? 2 |opf?
o= 4{(—'0) (2+73) +—‘—HI (2y5+3)}
2 p 50u

8 op\2 3 |ouP
~ oSS = 4 he . 1
o 27"{<P> P (816

For the scalar low-contrast case the normalized scattering cross section may be
described by the simple formula (VAN DER HULsT, 1957)

4 4
oy R2——sing +— (1 —cosa) (8.17)
a a
where
w2R w2R
a= < %ON V(z)) (8.18)

and where the V® are chosen as either V¥ or V', according to the nature of the
incident wave. This result can be explained by the interference of the incident and
refracted waves propagating in the forward direction, where the parameter a is just
the phase difference between these two waves in the far field. MOROCHNIK (1983a,
1983b) derived this same expression for the low-contrast elastic case. More recently
{KORNEEV and JOHNSON, 1993b) compared this result with the exact solution for
an incident plane P wave and found good agreement for contrasts of about 40%,
except at very low frequencies.

It is clear that formula (8.17) is asymptotic to the value 2 in the high-frequency
limit. This is the result of the manner in which the problem was formulated,
whereby, as mentioned in section 5, the secondary diffracted field contains both the
scattered waves and any modifications of the primary incident wave. For the
perfectly absorbing sphere, in which case there will be no waves that are actually
scattered, the secondary field U,, must have a value sufficient to cancel the incident
wave In the shadow and the normalized scattering cross section will have an
asymptotic value of 1.

9. Low-frequency Scattered Fields

Expressions (8.1)—(8.5) for the canonical scattering coefficients of a homoge-
neous elastic sphere may be used to obtain low-frequency asymptotics for the
scattered field (4.21). Thus, for the incident P wave (4.22) we have the far-field
asymptotic solution

U2, =UZ + UL 9.1)
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3
(=) + i — o )
2
UL =4 12 N L cosf += By L(1—3c0520) £
2173, e )e P2 KAV D
2\ I Ha
(9-2)
UL = B{—(ﬁ - 1) sin 0 + (ﬂ— 1) 7 Sin 29}6 (9.3)
P2 Ha D
and for the incident S wave (4.24) the far-field asymptotic solution has the form
Us. =Us + Us (9.4)
U;izA{(Bl—l)sinH—(ﬂ—l)lsin 29}c0s 03y (9.5)
P2 Mz D
1 ~
Us = B{(B—1 — 1) cos 6 — (Hl — 1) — cos 20} cos ¢f
P2 2 D
1 "
+B{—<ﬁ—1>+<ﬂ—1)—cos H}sin oé (9.6)
P2 Ho D
where the following notation has been used
|14 e—ikpr Vv e—ik_,r 4
— 2 B = 2 _ — _ R3. .
4 PAn v ks4n ro’ 4 37 .7

The case of a low contrast between the material properties of the inclusion and
the surrounding material (Born approximation) is defined by the conditions

03] _Vh—Af o] _lm—pel ol _le—pal

’ . 9.8
2 v H Ha p p 8)

and then the expressions (9.1)—(9.6) become the same as those obtained by
GUBERNATIS et al. (1977a, 1977b). For an incident P wave these are

oA op 26
Ut =4{— 22 cos 6 — 20 b ,

P { )L+2u+pcos l+2#cos G}r (?9)

op . o ~
U§=B{——p sin 0 4y 22 sm20}0 (9.10)

p 1
and for an incident S wave they are
0

U;i:A{% sin9~5fsin29}cos¢>f (9.11)

5 5 . 5o & .
U§=B{fcos€—Tftcos20}cos¢0+B{—~p8—|—fcos<9}sin¢¢. (9.12)
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10. Numerical Results

In order to illustrate some of the properties of the solutions derived in this
paper, numerical calculations were performed for a few sample problems involving
a homogeneous spherical inclusion. For the first set of examples the material
properties of the surrounding medium were chosen to be representative of a typical
continental crust:

Ve =60kmfs, VP =35kmfs, p,=2.7g/em’.

Five different models were used for the inclusion, with the properties chosen to
represent a variety of different types of obstacles that might be encountered in the
earth. The elastic parameters for these five models are as follows:

model 1— VP =75km/s, VI’ =44km/s, p, =3.1glcm’,
model 2— VP =4.5kmfs, VI’ =26kmfs, p, =2.3g/em’,
model 3— V) =34kmfs, VI’ =00km/s, p,=2.7glem’,
model 4— VP =1.4kmfs, VI =0.0km/s, p,=1.0g/cm’,
model 5— V) =0.0km/s, V¥’ =0.0km/s, p,=0.0g/em’.

For each of these models the scattering problem was solved for an incident plane
P wave and also for an incident plane S wave. The results of the calculations are
presented by plotting the normalized scattering cross sections ¢% and % as a
function of the parameter ¢ =&, = wR/V.

Models 1 and 2 simulate high-velocity and low-velocity inclusions, respectively,
with the difference in material properties being about 20% in each case. Figures 1
(model 1) and 2 (model 2) present the normalized cross sections for these two types
of inclusions. The general pattern of the total scattered field in these cross sections
is described by an increase as w* at low frequencies which merges into long large
oscillations about a constant value of 2.0 at higher frequencies. These long
oscillations are caused by the interference between the waves that propagate
through the inclusion and those that propagate around it (VAN DER HULST, 1957),
and the asympotic value of 2.0, as discussed earlier, results from the fact that the
scattered field contains both the waves scattered by the inclusion and the distur-
bance of the primary field. Superimposed on this pattern, particularly evident in
Figure 2, are short small amplitude oscillations caused by multiple reflections within
the inclusion. Because the low-velocity inclusion tends to focus energy within the
obstacle considerably more than the high-velocity inclusion, these short oscillations
are far more pronounced for the low-velocity inclusion.

Of particular interest in Figures 1 and 2 is the comparison of the scattering cross
sections for incident P waves and S waves at low frequencies where the wavelengths
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Figure 1

Normalized scattering cross sections for an elastic homogeneous sphere as a function of the parameter

k,R = oR[V,. These results are for the high-velocity inclusion which is listed as model 1 in the text. The

top two panels are for the case of an incident P wave, while the bottom two panels are for an incident

S wave. The panels on the right are expanded versions of those on the left for small values of the

argument. The dashed line represents the energy scattered as P waves, the dotted line represents the
energy scattered as S waves, and the solid line represents the total scattered energy.

are larger than the size of the scatterer. In this frequency range the P — .S scattering
is much stronger than the S — P scattering, in agreement with the results derived in
section 7. For an incident P wave the energy scattered into the S field can exceed
that scattered into the P field, whereas in the case of the incident § wave the
amount of energy scattered into the P field is negligible compared to that scattered
into the S field.
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Similar to Figure 2 for the low-velocity inclusion which is listed as model 2 in the text.

Models 3 and 4 are fluid inclusions, with model 3 simulating an inclusion of
molten rock and model 4 simulating an inclusion filled with water. The scattering
cross sections for these fluid inclusions are plotted in Figures 3 and 4 and show a
pattern similar to that of the elastic inclusions except that all of the features are
shifted toward lower frequencies. Because of this the scattering reaches significant
levels at rather low frequencies where the size of the inclusion is still much smaller
than the wavelength of the incident wave. The observation made of the elastic
inclusions that the P — S scattering is much stronger than the S — P scattering is
even more pronounced for the fluid inclusions, with the scattered S field dominating
the scattered P field at low frequencies regardless of whether the incident field is a
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Similar to Figure 1 for the fluid inclusion which is listed as model 3 in the text.

P wave of S wave. In addition, for the case of the incident P wave the scattered S
field is now comparable to the scattered P field over the entire frequency range.

For the case of water-filled inclusion (Figure 4) the resonant features of the
scattering cross sections are particularly conspicuous. The positions of the reso-
nance peaks correspond to the real paris of the complex roots of the determinant
(A.9) contained in the denominator of the canonical scattering coefficients. Some of
these roots (including the first one) may be obtained by letting / = 1 in (A.9), which
leads to the equation

'1 .
O (10.1)

The first few roots of this equation are &, ~ 2.1, 5.9, 9.2, .. ..
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Similar to Figure 1 for the fluid inclusion which is listed as mode} 4 in the text.

Tn model S the inclusion is a hollow cavity and the scattering sections are shown
in Figure 5. It is useful to think of this model as a modification of the water-filled
inclusion of model 4 in which V(" and p, are reduced to zero. This helps explain
why the scattering cross sections of Figure 5 are essentially smoothed versions of
those in Figure 4, with the main differences being related to the fact that the cavity
has no resonances associated with the scattered field within the inclusion. The fact
that the general patterns of the scattering cross sections of Figures 4 and 5 are
similar indicates that this pattern is controlled primarily by the vanishing of the
shear modulus within the inclusion.

It is worth pointing out that the properties of the material surrounding the
inclusion and wavelengths of the incident waves are identical in Figures 1-35.
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Figure 5 .
Similar to Figure 1 for the cavity inclusion which is listed as model 5 in the text.

However, it is clear that the common features of the scattering cross sections are
found at rather different frequencies for the different types of inclusions. This result
can be explamned if one describes the frequency dependence of the scattering cross
sections in terms of the wavelength of the scattered field rather than the wavelength
of the incident wave. Note that in applying this reasoning, the wavelengths of the
scattered fields both inside and outside the inclusion must be considered. This
general principle explains why the scattering cross sections of the § field are always
shifted toward lower frequencies with respect to those of the P field (compare the
upper and Jower panels in Figures 1, 2 and 3), why low-velocity inclusions have
scattering cross sections that are shifted toward low frequencies with respect to
those of high-velocity inclusions (compare Figures 1, 2, 3, 4 and 5) and why the
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position of the resonance peaks in the scattering cross sections depends upon the
velocity within the inclusions (compare Figures 3 and 4).

This same type of reasoning about the wavelength of the scattered field also helps
explain the general result that the P —.S scattering is stronger than the S — P
scattering at low frequencies. From section 9 it is clear that the low-frequency
scattering energy is proportional to (R/wavelength)®. Such a result favors the
scattering of S waves because of their shorter wavelength. Another way of saying this
is that, using the scale of wavelengths, an inclusion appears larger to an S wave than
to a P wave and thus it is scattered more intensively. What is not so obvious is that
the ratio in the scattering intensities for the converted waves should be independent
of frequency and proportional to the squared ratio of the velocities. However, it is
clear in Figures 1-5 that the shape of ¢%% curve is always identical to the
corresponding o3 curve, with the amplitudes of the curves scaled according to (7.1).

In section 8 it was pointed out that the case of an inclusion with intrinsic
attenuation can be treated by assigning complex values to the elastic parameters
within the inclusion. Examples of the normalized scattering cross sections for this
type of an inclusion are shown in Figures 6 and 7. The attenuation was characterized
in terms of the quality factor Q; where

_Im{}  Im{p}
~ Re{d;} Re{u}

The calculations were performed for the low frequency case where k, R = 0.05 and
the figures show how the cross section changes as the attenuation of the inclusion
is increased. Figure 6 shows the results for the high-velocity inclusion listed earlier
as model 1, and Figure 7 is for the low-velocity inclusion of model 2. The results
are quite similar for the two types of inclusions. For small attenuation the scattering
cross sections are just the low frequency values shown in Figures 1 and 2. As the
attenuation is increased the scattering cross sections also increase and approach the
limiting values associated with the coefficients given in (8.9) and (8.10). The
attenuation affects the scattered S waves considerably more than the scattered P
waves, as the scattering cross sections for the incident S wave reaches values which
are about 3 times those for the incident P wave. Furthermore, for both cases of an
incident P wave and an incident S wave the scattered field consists almost entirely
of S waves.

The basic solutions presented in this paper are completely general in that they
can be applied over the entire frequency range and to an inclusion of any size. For
instance, the scattering cross sections of Figure 3 can be used to provide a rough
estimate of scattering by the earth’s fluid core. More appropriate results can be
obtained by choosing the following material properties to represent the earth’s
mantle and outer core:

V® =113km/fs, V& =62km/s, p,=50gm/cm’
VP =99km/fs, VI =0.0km/s, p,=6.0gm/cm’.

o7’ . (10.2)
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Figure 6
Normalized scattering cross sections for an anelastic homogeneous sphere as a function of the
attenuation quality factor Q™' of the sphere. These results are for the high-velocity inclusion which is
listed as model 1 in the text with the elastic constants within the sphere modified to have complex values.
The frequency is constant with k,R = wR/V, = 0.05. The top two panels are for the case of an incident
P wave, while the bottom two panels are for an incident S wave. The panels on the right are expanded
versions of those on the left for small values of the argument. The dashed line represents the energy
scattered as P waves, the dotted line represents the energy scattered as S waves and the solid line
represents the total scattered energy.

These velocities were chosen to match the average travel times through the mantle
and core, and the densities were chosen to match the contrast in acoustic impedance
at the mantle-core boundary. The radius of the core was taken as 3482 km. For this
example it is instructive to consider the complete solutions to the scattering problem
in the time domain. The expansion coefficients for the incident field of (4.14) were
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Figure 7
Similar to Figure 6 for the low-velocity inclusion which is listed as model 2 in the text.

chosen to represent a point pressure source at a radius of 6300 km, and then the
scattered field of (4.21) was evaluated and transformed from the frequency domain
to the time domain. (KORNEEV and JOHNSON (1993a) show how the solution for
a point source is easily obtained from the plane wave solutions.) The spectrum of
the pressure at the source was flat below a corner frequency corresponding to a
period of 30 sec. The total solutions, including both the incident and scattered
fields, are shown in Figure 8 at 6-degree angular intervals for a radius of 6371 km.
Note that this is an example of high-frequency scattering, as k, R has a value of 730.

There is a variety of interesting features on the seismograms of Figure 8, but the
discussion here will concentrate primarily upon some of the diffraction effects. A
good example of this is the arrivals that fill in the gap between the PcS and PKS
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Figure 8
Synthetic seismograms calculated for a homogeneous fluid inclusion that simulates the earth’s core. The
seismograms are calculated every 6 degrees at a radius of 6371 km. The source is a point pressure pulse
at 0 distance and a radius of 6300 km. The panels on the left are the radial components of motion and
those on the right are the angular components of motion. The upper two panels are late-time versions
of those below with the amplitudes increased by a factor of 10. The dotted lines are the arrival times
predicted by geometrical ray theory.

phases. The geometrical ray arrivals for the PcS wave end at a distance of 72
degrees and those of the PKS wave begin at 122 degrees, but in Figure 8 this gap
is completely filled by diffracted waves. Another example is the P2KS phase which
ends with a caustic at a distance of 175 degrees, but strong diffracted waves extend
out to 180 degrees and back to less than 150 degrees where they merge with the
PKS phase. The situation is actually more complicated than this, as the P3KS
geometrical arrival extends out to 115 degrees and then is continued by diffracted
waves that merge with the P2KS wave near 180 degrees, while the P4KS geometri-
cal arrival extends to 55 degrees and is continued by diffracted waves near 100
degrees. Thus the waves P4KS, P3KS, P2KS, PKS and PcS along with their
diffractions all come together to form a complex and continuous group of waves
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that appear on these seismograms between a distance of 60 degrees and time of
2300 seconds, extend out to 180 degrees and 1600 seconds, and then continue back
to a distance of 0 degrees and 700 seconds. Increasing the amplitude of the
seismograms would allow this same type of pattern to be extended to include the
P5KS wave and other higher order core waves of this family. The same type of
phenomenon also occurs for the PKP family of waves, although these waves are of
slightly lower amplitude than the PKS waves and thus not as easily observed in
Figure 8.

The distances mentioned above for the regions of geometrical arrivals and
diffracted waves will be slightly different in the real earth because of the radial
variation in velocity in the mantle and core. The seismograms will also be
considerably more complicated because of the additional waves caused by the inner
core, the surface of the earth and S waves generated at the source in the case of
earthquakes. However, the relative amplitudes of the different waves, the distor-
tions in the wave forms, and the interaction between the geometrical and diffracted
arrivals shown in Figure 8 should be generally applicable to long period waves in
the earth.

There is one other feature present in Figure 8 which is worth mentioning. On
the radial component at a distance of 180 degrees and at a time of about 2500 sec
there is just discernible a long period wave (period of about 600 sec). This is an
interface wave of the Stonely or Scholte type which travels on the mantle-core
boundary with a velocity of about 4.4 km/sec. RIAL and CORMIER (1980) pointed
out that there are a variety of unique wave propagation effects, some of which are
unexplained, which appear in the antipodal region and provide a rich source of
information regarding the structure of the earth’s interior. Thus calculations such as
those in Figure 8, particularly if extended to higher frequencies, might be quite
useful in the interpretation of observational data.

11. Discussion and Conclusions

The primary purpose of this paper is to present in a convenient form the exact
solutions for the scattering of P waves and .S waves by a spherical inclusion and to
point out some of the important properties of these solutions. However, it is also
of value to consider whether these results can be used to make general inferences
regarding the scattering of elastic waves in the earth. In doing this, the first point
which must be discussed is the applicability of results for a spherical inclusion to the
conditions in the earth in which the shape of the inclusion is often unknown, but
most likely different from that of an exact sphere. Here one can appeal to the fact
that scattering by a sphere represents a canonical problem for a more extended class
of objects with relatively simple and smooth boundaries, and thus reason that these
results should apply in an approximate manner to a wide class of objects having
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these properties. In the low-frequency range (Rayleigh scattering) an even stronger
argument is possible, as was shown in section 9 that for this case the solutions
depend only upon the volume of the inclusion and not upon its shape. Thus the Jow
frequency results presented in this paper should be applicable to small 3D inclu-
sions of any shape in the earth.

In the low-frequency range there is a strong asymmetry in the relative scattering
of P waves and S waves. The P — § scattering is generally far more intensive than
the S — P scattering. This is explained in a qualitative sense by the fact that the
inclusion appears to be larger to the S wave because of its shorter wavelength and
the fact that the scattering is controlled by the wavelength of the scattered wave
rather than the wavelength of the incident wave. It is common for an incident P
wave to have more energy in the scattered S field than the scattered P field, whereas
for an incident .S wave most of the scattered energy is in the S field. This suggests
that the coda of P waves should contain a significant proportion of .S waves, while
the coda of S waves should be predominantly § waves.

This asymmetry in the scattering conversion of P and S waves can be quantified
for the case of the spherically symmetric scatterers considered in this paper. It was
shown in section 7 that the mean intensity of the P — S converted waves is 2V2 [V
times the mean intensity of the S — P converted waves, and this ratio is independent
of frequency. For more general scatterers it is possible to write reciprocal relations
such as those given in Appendix D, but it is not obvious how these can be
converted to intensity ratios such as that just given for a spherical scatterer.
However, at low frequencies in the domain of Rayleigh scattering where only the
volume of the inclusion is important, it is conjectured that the ratio of the mean
intensities of the converted waves will approach the value obtained for spherical
scatterers. Thus this strong asymmetry in the scattering conversion of P and S
waves is likely to be a general result when the wavelengths are large compared to
the size of the inclusion.

The scattering from a fluid inclusion is more intensive than the scattering from
an elastic inclusion, with the general frequency dependence of the scattering being
controlled by the contrast in the shear modulus. Superimposed upon this frequency
dependence is a series of resonance peaks which are controlled by the compressional
velocity of the fluid. The potential exists here to use the spectrum of the scattered
waves to estimate the dimensions of the scatterers, although the case in which there
is a distribution in the size of the scatterers would tend to smooth out the resonance
peaks. Regardless, the amount of energy scattered into the § field by an incident P
wave is an effective diagnostic which can be used over the entire frequency range to
identify fluid inclusions.

In the case of a low contrast between the material properties of the inclusion
and the surrounding medium only a few of the scattering coefficients need be
included in the low-frequency range and they have a simple dependence upon the
material properties (equations (8.1)—(8.6)). The form of these coefficients is suit-
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able for use in inverse problems, with some of the coefficients depending primarily
upon the contrast in density, others depending primarily upon the contrast in shear
modulus, and others depending upon the contrast in bulk modulus.

One feature of the low-contrast approximation, as is true of most Born-type
approximations, is that it does not satisfy conservation of energy. However, this is
easily remedied. The equations (5.8)—(5.10) are derived from (5.2) and are essen-
tially statements of conservation of energy. The right-hand sides of these equations,
which involve only the real parts of the canonical scattering coefficients, represent
the energy terms that are coherent with the primary field and thus account for the
change in energy of the primary field that must occur when additional scattered
fields are generated. Applying this to the low-contrast case, we note that the
coefficients (8.1)—(8.6) are completely imaginary and represent only the scattered
fields, the real parts which represent the change in the primary field having been
dropped in the approximation. However, these real parts can be recovered from the
expressions (5.8) —(5.10), and including the real parts will restore the conservation
of energy. Note that because the coefficients (8.1) —(8.6) all have an (w)* frequency
dependence, the real parts of these coefficients will have an (w)® frequency depen-
dence, which in most cases will make them small enough to be neglected. However,
in some situations, such as studies of attenuation of primary waves due to
scattering, these real parts of the scattering coefficients should be included in order
to achieve a formulation more compatible with energy conservation.

A caveat involving intrinsic attenuation should also be mentioned. As men-
tioned in section 8, the canonical scattering coefficients can be modified to include
intrinsic attenuation by introducing complex elastic parameters. However, in this
case some of the relations, including (5.8)—(5.11), are no longer valid because strain
energy is no longer conserved. The analysis of the low-contrast approximation is
still possible, as introducing complex eclastic parameters into (8.1)—(8.6) produces
real parts of these coefficients which are proportional to (w)* and which cause an
attenuation of the primary field due to the intrinsic attenuation which dominates
that due to the scattering.

Appendix A

Canonical Scattering Coefficients for the Field Exterior to a Homogeneous Sphere

Consider the case of a homogeneous elastic sphere of radius R with elastic
parameters A, u, and density p, surrounded by a medium having elastic parameters
Ay, U, and density p, with the continuous boundary conditions (4.17). The canon-
ical scattering coefficients have the analytical representations listed below. For
comparison, HINDERS (1991) gives equivalent expressions for the solution in terms
of displacement potentials.
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An expression for Ay, can be derived from (A.3) by substituting for the functions
(&) (k=1—1,114+1) the corresponding functions —j,(£,). Analogously, Agg
can be derived from the same expression by substituting for the functions /,(y,)
(k =1—1,1,1+1) the corresponding functions —j,.(n,). The following definitions
have been used in equations (A.2)-(A.5).

Ay =+ Djr &) + G Ea) g (m)
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(A.6)



710 V. A. Korneev and L. R. Johnson PAGEOPH,
=£<1_P1ﬂ§)=3<1_ﬂ> ) _re
i\ pmi) M\ w) 7V

R A+ 2;11 N
él =4-m: M= ) V(l) V(l) -

v = (1> N 01

wR A +2u
=T M= W, e = NG f NN
’4

For the case of a fluid within the sphere (1, = 0), the above expressions reduce to
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Expressions for App and for Agg can be derived from A in the same way as in the
elastic case.

For the case of a cavity the above expressions can be further simplified to
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Expressions for Ap, and for Agg can be derived from A as in the previous cases.

Appendix B

Canonical Scattering Coefficients for the Field Interior to a Homogeneous Sphere

The diffracted field inside a homogeneous elastic sphere may be calculated using
the expression (4.21), where all the spherical Hankel functions 4, are replaced by
spherical Bessel functions j, and where the wavenumbers k, and k, are taken for the
inner medium v = 1. The canonical scattering coefficients for the inner medium
have the forms
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where the expression for A is given by (A.3) and the notation (A.6) has been used.
For the case of a fluid within the sphere, the above expressions can be reduced

to
7 =0 (B.7)
4 2 hy(n2)
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where the expression for A is given by (A.9).

Appendix C

Scattered Fields Produced by Incident Plane P and S Waves

For the case of the incident plane P wave (4.22) the scattered field in the outer
medium has the form
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For the case of the incident plane S wave (4.24) the scattered field in the outer
medium has the form
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in terms of the spherical vectors (3.1), and

Usc = USP + Uss

= % ity 2T 2+ 1) {2 cos qﬁ[ (hz 1(k,r) =+ 1) ik, r))

& 200+ 1) ,r
—b5I+ 1) hl%k:L)]P} (cos O)F
+ cos qs[w, 0, O)hkor) + i 0s(6) 2"

P

hy(k, )
+beQ2<e>(1 ,(”” —h,_1<ksr)>]a

hl(k r)

P

#0015 e ) o) (€3

S

— sin d{lc’z Qx (O, (k,r) + ai” 0, (0) — -2

in a spherical coordinate system, where
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Appendix D

Relative Strength of P to S and S to P Scattering from Reciprocity

The purpose of this appendix is to extend the analysis of AKI (1992) to the case
of P and S waves having arbitrary polarizations. Consider a localized scatterer with
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a spherical coordinate system centered upon it. At the point (v, 8,, ¢,) is located the
unit radial force

fo(r, 0,, ) =1. (D.1)
The scattered S wave generated by this force and observed at a second location
(r, 05, @) is
Ups(, 03, $2) = upsi (1, 62, )0 + upso(r, 02, 62)6
= Ups(r, 0y, $2){cos (2,)0 + sin (o)} (D.2)

where o, is the polarization angle of the S wave at the second location. Tt has been
assumed here that the distance r is sufficiently large so that only far-field parts of
the solution need be included. At this second location two separate forces are
considered. The first is the unit transverse force

f5:(r, 0, ¢,) = 0. (D.3)

At the first location (r, 6,, ¢,) this gives rise to a scattered P wave with displace-
ment

U p(7, 01, @1) =ugyp(r, 01, $1)E. (D4)
The reciprocal theorem states that
fp(r, 01, 1) - usip(r, 05, 1) =511, 6, §2) - ups(r, 6, ¢) (D.5)
and in the present case, using (D.1)-(D.4), this means that
ugip(r, 01, 1) = upsi (r, 0, &) (D.6)
The second force to be considered is the unit transverse force
f2(r, 02, ¢2) = & (D.7)
which produces a P wave at the first location with displacement
Usyp(r, 01, ¢1) = usop(r, 0y, ¢1)E. (D.8)
Applying the reciprocal theorem in this case yields
usap(r, 01, 1) = upsy(r, 05, ¢5). (D.9)

The two expressions (D.6) and (D.9) are the reciprocal relations for two orthogonal
polarizations of the S wave. In general both polarizations will be present in a
scattered P wave and thus both reciprocal relations are required.

In the vicinity of the scatterer the amplitude of the P wave incident from the
first location will be

o L
AnpVir
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and that of both S waves incident from the second location will be

1
A4mpVir

uld

Thus (D.6) can be written in terms of amplitude ratios as

usip(ts 01, &) _ Vs upsi (1,95, §2) (D.10)

ud iz u)
and (D.9) becomes

uSZP(ra(Q)ls ¢1) 213 Ups: (7, QZa ) - (D.11)
us Ve u$

These are exact relationships for the two polarizations of the S wave and they show
that in cach case the P —.§ scattering is stronger than the S — P scattering by a
factor of (V/Vs)2. The result (D.10) with ¢, = ¢, = 0 is essentially that derived by
AKI (1992). While these results are very general, they are not entirely suited to the
scattering problem. First, they deal only with the separate components of the
motion and cannot be converted to equivalent expressions involving the total
amplitude of the motion unless the polarization angle of upg is determined.
GUBERNATIS et al. (1977, 1979) have given general formulas for the far-field
scattered P and S waves and specific formulas for a few special cases of homoge-
neous inclusions which can be used to determine this polarization angle, however
the results are not particularly simple. The second problem with these reciprocal
relations is that they involve P waves and S waves incident from different
directions, and the geometry of most interest in scattering problems involves P and
S waves incident from the same direction.

The reciprocal relationships (D.10) and (D.11) can be further simplified in the
case of symmetrical scatterers. In the case where the scattering object possesses
cylindrical symmetry about the (8, ¢,) direction, the polarization angle of upg is
given by

sin(6,) sin(¢, — ¢,)
sin(o)

sin(a,) =

where
c0s() = cos(f,) cos(8;) + sin(6,) sin(8,) cos(¢, — ¢P,).

For an object with spherical symmetry this result holds for all directions and,
furthermore, the two positions (8,, ¢;) and (6,, ¢,) can be freely interchanged. To
duplicate the problem considered in this paper let the P wave be incident from
(8, =7, ¢, =0) and then

Ups(r, 0, §) = tpy (7, 0, $)0 = —ups(r, 6, $)6.
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Also let the S wave be incident from this same direction (6, =7, ¢, =0) and
without loss of generality take fg, = 0. Then use (D.6) and the spherical symmetry
to write

tigp(ry 0, @) = ups (r, 7, 0)
= cos(PIups(r, 7, 0)
= CoS(Pugy p(r, 0, }).
Substituting these results into (D.10) yields

uSP(r’ 03 d)) Vé uPS(ra 6’ ¢)
T: -—7% COS(¢)T. (D12)

This result is more applicable to the scattering problem as it involves the total
amplitude of the P and S waves and both the incident P wave and the incident S
wave arrive along the same direction. It is identical to (7.8) which was obtained
from the exact far-field solution for a homogeneous spherical scatterer. Note that
the angle ¢ in this result is just the angle between the polarization vector of the P
wave and the plane containing the polarization vector of the S wave and the
scatterer.

The reciprocal relationships can also be simplified by considering the average of
an ensemble of random scatterings. For the case of an arbitrarily oriented scatterer,
the two polarizations of the scattered S wave are equally probable, so the most
likely situation is

- - 0+4
Ups(¥, 0, §) = upg (r, 0, )0 + ups: (1, 0, )P = ups(r, 6, P) {7}

Also, on the average,

us1p(r, 0, @) = ugp(r, 0, ¢) = usp(r, 0, ¢).
Then (D.10) and (D.11) can be combined to yield

ups(r,0,8) _ 2V} use(r, 0, ¢) (D.13)

u'd VZ u®

When this expression is squared to obtain intensities, it is identical to (7.4).
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